KEYS TO THE VINES OF CAROLINA WETLANDS

Alexander Krings
Herbarium, Department of Botany
North Carolina State University
Raleigh, NC 27695-7612
Alexander_Krings@ncsu.edu

ABSTRACT

Keys developed as part of a broader guide to Carolina wetland vines are presented. Eighty-nine species in 24 families are treated. Wetland indicator designations are provided for all taxa.

Understanding factors controlling vine distributions is of interest in understanding broader patterns of vine species richness. Several factors, such as soil moisture (Bell et al. 1988; Collins \& Wein 1993), availability of small diameter supports (Putz \& Chai 1987), distribution and spatial arrangement of supports (Putz \& Chai 1987), as well as preferences for light microenvironments within host canopies (Castellanos et al. 1999) have been found important, but further study is warranted before a synthesis can be obtained. Wetland vines present an interesting opportunity to further study structural, as well as eco-physiological, constraints that may be important limiting factors. However, as in many cases, research can be hindered by the lack of up-to-date taxonomic and nomenclatural treatments (Krings 1997). Although a revision is in progress (Weakley, pers. comm.), the most recent Flora of the Carolinas (i.e., Radford et al. 1968) is largely out of date from a taxonomic, nomenclatural, and species distributional stand point. Various other floras include vine taxa found in the Carolinas (e.g., Small 1933; Godfrey \& Wooten 1981; Godfrey 1988; Wofford 1989), but are also either out of date or not focused specifically on climbing taxa
in a convenient way to facilitate further ecological study of vines as a group. In order to fill this void, as well as to provide a resource for field biologists engaged in wetland delineation (or simply plant enthusiasts who don't mind getting their feet wet!), a guide to Carolina wetland vines is currently being developed at the North Carolina State University herbarium (NCSC). Keys developed as part of the guide (which also includes descriptions, illustrations, and images) are released here.

METHODS

Keys were developed based on critical study of specimens held at NCSC and review of applicable literature. Eighty-nine species of lianas and herbaceous vines in 24 families are treated. These taxa include species known to occur in the wetlands of North and South Carolina (Reed 1988), as well as common relatives that may be found on adjacent non-wetlands. US Fish and Wildlife Service wetland indicator designations follow Reed (1988) and are provided following each species name in the following order:
"Southeast Indicator; National Indicator." Table 1 highlights the standard abbreviations used to classify wetland plants.

TABLE 1. Wetland indicator abbreviations

OBL: Obligate Wetland. Occur almost always (estimated probability $>99 \%$) under natural conditions in wetlands.
FACW: Facultative Wetland. Usually occur in wetlands (estimated probability $67 \%-99 \%$), but occasionally found in nonwetlands.
FAC: Facultative. Equally likely to occur in wetlands or non-wetlands (estimated probability $34 \%-66 \%$).
FACU: Facultative Upland. Usually occur in non-wetlands (estimated probability $67 \%-99 \%)$, but occasionally found in wetlands (estimated probability $1 \%-33 \%$).
UPL: Obligate Upland. Occur in wetlands in another region, but occur almost always (estimated probability $>99 \%$) under natural conditions in non-wetlands in the region specified.
NI: No Indicator. Recorded for those species for which insufficient information was available to determine an indicator status.

Primary Keys

1. Leaves alternate
2. Leaves simple...Key 1, p. 25
3. Leaves compound...Key 2, p. 33
4. Leaves opposite
5. Leaves simple...Key 3, p. 35
6. Leaves compound...Key 4, p. 38

Key 1: Leaves alternate, simple

1. Vines tendrillate
2. Tendrils stipular, paired at each petiole [Smilacaceae]
3. Vines herbaceous; unarmed; peduncles typically $>4 \mathrm{~cm}$ long
4. Abaxial leaf surface glaucous, glabrous; fruiting peduncles
2.5-8 times as long as the subtending petiole; fruit glaucous, dark bluish...Smilax herbacea FAC; FAC
5. Abaxial leaf surface glossy, not glaucous, glabrous to puberulent at least along the vines; fruiting peduncles 1-6.4 times as long as the subtending petioles; fruits not glaucous, black...Smilax pulverulenta FAC; FACU, FAC
6. Vines woody; armed or not; peduncles typically $<4 \mathrm{~cm}$ long
7. Abaxial leaf surface strongly and conspicuously glaucous...Smilax glauca FAC; UPL, FAC
8. Abaxial leaf surface not, or rarely only slightly, glaucous
9. Stem prickles abundant, thin, acicular...Smilax tamnoides (incl. S. hispida) FAC+; FAC, FAC+
10. Stem prickles few to somewhat abundant, bases broad, narrowly triangular or recurved
11. Leaves evergreen, thick, coriaceous, the midvein conspicuously pronounced, the later veins scarcely raised...Smilax laurifolia FACW+; FACW, OBL
12. Leaves evergreen or deciduous, typically thin, subcori-
aceous, the midvein scarcely, if any, more pronounced than the lateral veins
13. Leaves lanceolate, the bases cuneate, the apices acute to acuminate; fruits brownish red to blackish when mature...Smilax smallii FACU; FACU
14. Leaves ovate, oblong, pandurate, to hastate, the bases cuneate or not, the apices rounded to acute; fruits variously colored
15. Lamina with a prominently thickened marginal vein...Smilax bona-nox FAC; FACU, FAC
16. Lamina lacking a thickened marginal vein, though margins sometimes revolute
17. Leaves semi-evergreen or evergreen, the margins often (but not always) with minute, denticuloid projections, typically not revolute; perianth green; fruiting peduncle as long as or longer than the subtending petiole; fruits bluish-black... Smilax rotundifolia FAC; FAC
18. Leaves deciduous, the margins lacking denticuloid projections, frequently revolute; perianth dull or brownish-yellow; fruiting peduncle shorter than the subtending petiole; fruits red...Smilax walteri OBL; OBL
19. Leaf margins often spinulose; inflorescences only in the first 1-5 leaf axils of a branch...Smilax bona-nox FAC; FACU, FAC
20. Leaf margins never spinulose; inflorescences in all leaf axils of a branch (or essentially so...perhaps missing from the last 1-2)...Smilax auriculata FACU; FACU
21. Tendrils not stipular, not paired
22. Tendrils borne opposite the leaves [Vitaceae]
23. Bark of mature stems shredding, brown (except tight and gray in V. rotundifolia); piths brown; inflorescence paniculate
24. Bark of mature stems smooth, gray, adherent, not shred-
ding; piths continous through the nodes; tendrils simple...Vitis rotundifolia FAC; FAC-, FACW
25. Bark of mature stems shredding, brown; piths interrupted at nodes; tendrils branched
26. Tendrils or inflorescences emerging at three or more successive nodes... Vitis labrusca FAC+; FACU, FAC+
27. Tendrils or inflorescences lacking every third node
28. Abaxial leaf surface glaucous when mature [Vitis aestivalis] FAC-; UPL, FAC
29. Nodal diaphragms typically $>2 \mathrm{~mm}$ thick; abaxial leaf surface floccose, essentially obscuring the glaucescence; growing tips arachnoid floccose...Vitis aestivalis var. aestivalis
30. Nodal diaphragms typically < 2 mm thick; abaxial leaf surface glabrous or essentially so; growing tips glabrous to somewhat arachnoid floccose...Vitis aestivalis var. bicolor
31. Abaxial leaf surface not glaucous when mature
32. Nodal diaphragms $<1 \mathrm{~mm}$ thick (typically <0.5 mm); growing tips enveloped by enlarging, unfolded leaves...Vitis riparia FACW; FACU, FACW
33. Nodal diaphragms $\geq 1 \mathrm{~mm}$ thick; growing shoot tips not enveloped by enlarging, unfolded leaves 19. New stems terete (or essentially so), glabrous or arachnoid-pubescent, the nodes lacking red bands; abaxial leaf surface glabrous or with trichomes along the veins and in the axils; fruits typically $>8 \mathrm{~mm}$ in diam....Vitis vulpina FAC+FAC, FACW-
34. New stems angled, glabrous or arachnoidpubescent, the nodes generally with red bands (although sometimes lacking in V. cinerea var. floridana); abaxial leaf surface glabrous to slightly arachnoid floccose; fruits typically $<8 \mathrm{~mm}$ in diam. [Vitis cinerea] FAC+; FAC, FACW
35. Stems slightly angled, arachnoid floccose; abaxial leaf surface floccose; vines of the Coastal Plain (mostly)...Vitis cinerea var. floridana
36. Stems conspicuously angled, glabrous to slightly arachnoid-pubescent; abaxial leaf surface glabrous to slightly arachnoid-pubescent; vines of the Piedmont and Mountains (primarily)...Vitis cinerea var. baileyana
37. Bark of mature stems otherwise; piths white; inflorescence cymose
38. Young stems glabrous; leaves unlobed or only obscurely 3-lobed; native, occurs along rivers and rich bottom-
lands...Ampelopsis cordata FAC+; UPL, FAC+
39. Young stems pubescent; leaves $3(-5)$ lobed, sometimes the lobes, pinnately lobed; introduced, adventive along edges, disturbed places...Ampelopsis heterophylla var. brevipedunculata NI
40. Tendrils borne at right angle to petiole or terminating short lateral branches or inflorescences
41. Tendrils terminating short lateral branches or inflorescences...Brunnichia ovata FACW; FACW-, FACW
42. Tendrils borne at right angle to petiole [Cucurbitaceae]
43. Tendrils simple; berries fleshy
44. Leaf lobes deltate, the sinuses angulate; berries green
to black; seeds white...Melothria pendula FACW-; FAC-, FACW-
45. Leaf lobes rhombic to elliptic, the sinuses rounded; berries red; seeds dark brown...Cayaponia quinqueloba FACW-; FAC, FACW-
46. Tendrils bifid to many-branched; berries fleshy or not 25. Tendrils bifid; berries red, smooth, neither hispid nor echinate...Cayaponia quinqueloba FACW-; FAC, FACW25. Tendrils 3-4-fid; berries not red, hispid or echinate
47. Corollas 5 -lobed; berries 1-2 cm long; seeds
1...Sicyos angulatus FACW-; FACU, FACW-

26. Corollas 6-lobed; berries 3-5 cm long; seeds 4...Echinocystis lobata FACW-; FACU, FACW-

1. Vines not tendrillate
2. Ocreae (sheathing stipules) prominent [Polygonaceae, in part] 28. Stems lacking barbs or prickles, flexuous; inflorescence fasciculate or racemose; nutlets trigonous
3. Calyx wing-keeled in fruit, the wings $\geq 1 \mathrm{~mm}$ wide; nutlets lustrous...Polygonum scandens FAC-; FACU, FACW
4. Calyx not wing-keeled in fruit or the wings greately reduced, $\leq 0.5 \mathrm{~mm}$ wide; nutlets dull...Polygonum convolvulus FACU; FACU-, FAC
5. Stems retrorsely barbed, somewhat rigid, the internodes essentially of linear segments; inflorescence racemose or capitate; nutlets biconvex or trigonous
6. Leaves hastate, the adaxial surface pubescent or the
abaxial surface stellate-pubescent, the apices acuminate; inflorescence racemose; nutlets biconvex; common in outer coastal plain, rarer in inner coastal plain and piedmont...Polygonum arifolium OBL; OBL
7. Leaves sagittate, both surfaces glabrous, the apices acute; inflorescence capitate; nutlets trigonous; throughout the Carolinas...Polygonum sagittatum OBL; OBL
8. Ocreae lacking
9. Leaves cordate, 7-11 veined from the base, the veins parallel, tertiary veins many, crossing secondary veins at essentially right angles; flowers 3-merous; fruit a 3-angled capsule; seeds compressed, broadly winged [Dioscoreaceae]
10. Stems narrowly winged or ribbed, polygonal in crosssection (8-14-angulate)...Dioscorea villosa FAC; FACU, FAC+
11. Stems terete, lacking narrow ribs ...Dioscorea quaternata FAC; UPL, FAC
12. Leaves cordate or not, lacking the combination of 7-11, par-allel- veined from the base with tertiary veins crossing secondary veins at essentially right angles; flowers 3-5-merous; fruit a capsule or not; seeds not winged
13. Petioles swollen just below leaf blade attachment or leaf blades peltate; flowers usually 3-merous [Menispermaceae] 34. Leaves not mucronate; petals lacking or vestigial; anthers 2-locular; stigma many-cleft...Calycocarpum lyonii FACW-; FACW-, FACW
14. Leaves mucronate; petals well-developed; anthers 4locular; stigma entire or slightly lobed
15. Leaf blade peltate; petals 4-12 (usually 6), lacking auriculate basal lobes; stamens 12-36; pistils 2-4 (usually
3); drupe blue to blackish...Menispermum canadense NI; FAC
16. Leaf blade not peltate; petals 6, with auriculate basal lobes; stamens 6; pistils 6; drupe red...Cocculus carolinus FAC; FACU, FAC
17. Petioles not swollen below leaf blade attachment, leaves not peltate; flowers 3-5-merous
18. Apical leaf margins crenate-denticulate to crenate, sometimes obscurely so, OR the secondary venation pinnate, the veins straight and strictly parallel and narrowly spaced
19. Bark of mature vines greenish-red to reddish; secondary venation pinnate, the veins $8-11$, essentially parallel, narrowly spaced (ca. 5 mm or less); phyllotactic spiral
$1 / 2 .$. .Berchemia scandens FACW; FAC+, FACW
20. Bark of mature vines gray; secondary venation pinnate, the veins 3-6, curved, or if somewhat straight and parallel, then ca. 1 cm apart, not narrowly spaced; phyllotactic spiral 2/5 [Celastraceae]
21. Leaves elliptic to obovate; inflorescence terminal, racemose-thyrsoid, generally with 6 or more flowers...Celastrus scandens NI; UPL, FACU
22. Leaves broadly obovate to suborbicular; inflorescence axillary, cymose, generally with 1-3 flowers...Celastrus orbiculatus NI; UPL
23. Apical leaf margins entire and secondary venation not strictly parallel and narrowly spaced
24. Vine woody; leaves basally deeply auriculate; corolla rotate, purple, lobes reflexed, each with two greenish basal spots...Solanum dulcamara FAC; FACU, FAC+
25. Vine herbaceous or woody; leaves not basally auriculate, lobed or not; corolla tubular, campanulate to infundibuliform, or zygomorphic, variously colored, the lobes lacking greenish basal spot
40 . Leaves small, generally $<3.5 \mathrm{~cm}$ long
26. Medial leaves hastate to sagittate; corolla spurred, two-lipped, cream to yellow, the upper lip purplish...Kickxia elatine FACU; UPL, FAC 41. Leaves oblong to oblong-lanceolate; corolla not spurred, campanulate to infundibuliform, pink to purple...Stylisma aquatica FACW+; FACW-, FACW+
27. Leaves not small, (3) $5-15 \mathrm{~cm}$ long
28. Flowers curved-tubular, 3-merous; vine woody when mature...Aristolochia tomentosa FAC; FAC 42. Flowers campanulate to infundibuliform, never curved, 5-merous; vine herbaceous
29. Stigmas 2, oblong, twice as long as wide or nearly so...Calystegia sepium FAC; FACU, OBL 43. Stigma 1, globose to biglobose, as wide as long or wider [Ipomoea]
30. Sepals not corniculate
31. Leaves conspicuously pubescent above and below
32. Sepal tips shorter than the rest of the sepal or only somewhat longer...Ipomoea purpurea FACU; UPL, FAC
33. Sepal tips much longer than the rest of the
sepal...Ipomoea hederacea FAC-; FACU, FAC
34. Leaves glabrous above and below, or essentially so
35. Outer sepal surface pubescent, at least near
the base, sepal margins ciliolate; corolla 2.8-5 cm long...Ipomoea cordatotriloba FACU; FACU, FAC
36. Outer sepal surface glabrous, sepal margins ciliolate; corolla 1.5-2.3 cm long...Ipomoea lacunosa $\mathrm{FAC}+$; $\mathrm{FAC}+$, FACW
37. Sepals corniculate (sometimes minutely so in Ipomoea sagittata)
38. Corolla salverform, red to scarlet, stamens and stigma exserted
39. Leaves unlobed...Ipomoea coccinea FAC; FACU, FAC
40. Leaves deeply, pinnately divided into linear segments...Ipomoea quamoclit FACU+; UPL, FACU+
41. Corolla infundibuliform or campanulate, white to yellow, rose, or purple, stamens and stigma included
42. Leaves strongly sagittate or hastatesagittate, the apices acute to acuminate, not retuse...Ipomoea sagittata FACW; FACW
43. Leaves lanceolate, deltate-lanceolate, to orbicular, the apices retuse
44. Leaves oblong to pandurate, lobed or not; corolla white with a yellow center...Ipomoea imperati FACU; FACU, FAC
45. Leaves suborbicular to orbicular, unlobed, generally with two abaxial glands near the base; corolla rose to purple...Ipomoea pes-caprae FAC; FAC

Key 2: Leaves alternate, compound

1. Vine a fern, reproductive structures borne directly on leaf surface; fronds consisting of two basal pinnules and a dormant bud
2. Pinnules palmately-lobed, segments 4-8, rounded...Lygodium palmatum FACW-; FACW-, FACW
3. Pinnules pinnately-compound, segments irregular, serrate...Lygodium japonicum FAC; FAC, FACW
4. Vine not a fern, reproductive structures not borne on leaf surface; leaves trifoliolate, palmately or pinnately-compound
5. Leaves palmately 5 -foliolate; vine tendrillate, the tendrils disktipped...Parthenocissus quinquefolia FAC; FACU, FAC
6. Leaves trifoliolately, biternately, bipinnately or pinnately compound; vine tendrillate (but lacking disk-tips) or not
7. Leaves trifoliolate; vine lacking tendrils
8. Vine climbing with adventitious roots, becoming large and woody with age...Toxicodendron radicans FAC; FACU, FACW
9. Vine lacking adventitious roots, climbing by twining, essentially herbaceous
10. Style bearded above
11. Corolla yellow to greenish-yellow...Vigna luteola FACW; FACW-, FACW
12. Corolla pink to purple to white
13. Leaflets conspicuously 3 -lobed; bracteoles as long as the calyx tube, if not exceeding it, lanceolate,
acute...Strophostyles helvula FAC; FACU-, FAC+
14. Leaflets unlobed; bracteoles only half the length of the calyx tube, ovate to oblong, blunt...Strophostyles umbellata FAC-; FACU, FAC-
15. Style glabrous
16. Calyx lobes constituting half the length of the tube or less; both petaliferous and apetalous flowers present, the petals pale purple to lilac or white; legume $0.7-1.0 \mathrm{~cm}$ wide...Amphicarpaea bracteata FAC; FACU, FACW
17. Calyx lobes constituting greater than half the length of the tube, often exceeding the tube in length; only petaliferous flowers present, the petals pink; legume 0.40.5 cm wide...Galactia volubilis FACU; FACU, FAC+
18. Leaves pinnately, bipinnately, or biternately compound; vine tendrillate or not
19. Vines not tendrillate
20. Plant a woody vine; leaflets $9-19 \ldots$ Wisteria frutescens FACW; FACW-, FACW
21. Plant an herbaceous vine; leaflets (3) 5-9
22. Leaflets oblong to elliptic, 7-9; calyx nearly regular, appearing 4 -lobed due to fusion of upper two lobes; petals white or reddish-tinged...Galactia elliottii FACU; FACU 12. Leaflets lanceolate to ovate-lanceolate, 5-7; calyx typically with one well-developed lobe, essentially as long as the tube, the other 4 lobes quite reduced; petals brownishred...Apios americana FACW; FAC, FACW

10. Vines tendrillate

13. Tendrils borne opposite the leaves; leaves bi-pinnately or bi-ternately compound...Ampelopsis arborea FAC+; FAC, FACW
14. Tendrils axillary or terminating the rachis; leaves bipinnately or bi-ternately compound or not
15. Tendrils axillary, bifid; leaves bi-ternately compound...Cardiospermum halicacabum FAC; FACU, FAC 14. Tendrils terminating the rachis; leaves pinnately compound
16. Styles flattened, bearded laterally; stems winged or not
17. Leaflets 2...Lathyrus pusillus FACW-; FAC, FACW16. Leaflets 4 or more
18. Leaflets 4-8 (10); racemes typically 2-6 flowered; lowermost calyx lobe generally $2 / 3$ as long as the tube, $\leq 2.5 \mathrm{~mm}$ long...Lathyrus palustris OBL; FAC, OBL
19. Leaflets (8) 10-14; racemes typically $10+$ flowered (10-30); lowermost calyx lobe only slightly shorter than the tube (rarely longer), $3.5-4.5 \mathrm{~mm}$ long...Lathyrus venosus FAC; FAC, FACW 15. Styles terete, or essentially so, encircled by a distal tuft of hair or with an abaxial tuft of hair; stems not winged
20. Tendrils typically branched (typically trifid); flowers solitary or paired (-4), in subsessile, axillary clusters near the stem apex...Vicia sativa ssp. nigra FACU; UPL, FACW
21. Tendrils simple or branched; flowers 4-20, in distinctly long-peduncled racemes
22. Tendrils simple or bifid; leaflets ≥ 10, ovate to elliptic, < 4 (6) times as long as wide; flowers 7-20; calyx lobes subequal; corolla pale lavender to white, the keel blue-tipped, the standard $0.8-1.2 \mathrm{~cm}$ long...Vicia caroliniana FACU; UPL, FACU 19. Tendrils simple; leaflets 2-4 (-6), narrowly oblong to linear, ≥ 8 times as long as wide; flowers 4 10; calyx lobes unequal, the lowermost the longest; corolla pale blue, the standard $0.7-0.9 \mathrm{~cm}$ long...Vicia acutifolia FACW+; FACW+

Key 3: Leaves opposite, simple

1. Vine climbing by adventitious roots; leaves unlobed, apices typically coarsely serrate to crenulate (rarely entire), leaf bases cuneate (sometimes cordate)...Decumaria barbara FACW; FACW, OBL
2. Vine climbing by twining or retrorse prickles, adventitious roots lacking; leaves lobed or not, typically entire (toothed only in Mikania scandens [flowers in heads], Kickxia elatine [basal foliar lobe only], and Humulus [stems with retrorse prickles]), leaf bases
cuneate or not
3. Vines armed with retrorse prickles; leaves palmately 3-5-lobed [Cannabaceae]
4. Leaves generally 3 -lobed (sometimes also with unlobed leaves on same plant); bracts of female flowers not ciliate, or if minutely so (visible only under magnification), then the hairs weak, not rigid...Humulus lupulus Ni; FACU
5. Leaves 5-9-lobed; bracts of female flowers conspicuously spinulose-ciliate, the pubescence visible without magnification...Humulus japonicus FAC-; FACU, FAC-
6. Vines unarmed; leaves not palmately 3-5-lobed
7. Leaves coarsely serrate or dentate; flowers in heads...Mikania scandens FACW+; FACW+, OBL
8. Leaves entire (sometimes coarsely pinnately-lobed in Lonicera japonica); flowers not in heads
9. Leaves 7-11-veined from the base, the tertiary veins essen-
tially perpendicular to the secondary veins [Dioscoreaceae]
10. Stems narrowly winged or ribbed, polygonal in cross-
section (8-14-angulate) ...Dioscorea villosa FAC; FACU,
FAC+
11. Stems terete, lacking narrow ribs...Dioscorea quaternata FAC; UPL, FAC
12. Leaves not as above
13. Vines exuding milky latex when cut [Apocynaceae] 8. Leaf bases cordate; leaves widely ovate or oblongovate; corollas rotate and the lobes maroon or greenishmaroon OR campanulate and the petals white, free
14. Corolla rotate, the lobes maroon or greenish-maroon;
follicles sharply angled, glabrous...Gonolobus suberosus FACW; FACW
15. Corolla campanulate, petals white, free; follicles only somewhat angled, if at all, glabrous...Cynanchum laeve FAC; FAC
16. Leaf bases cuneate to rounded, not cordate; leaves elliptic to lanceolate or linear; corollas campanulate to infun-
dibuliform or salverform, the lobes yellow, creamish, white, or pinkish-white
17. Slender woody vine; stems reddish-brown; leaves ovate to elliptic or lanceolate, tertiary leaf venation conspicuous and perpendicular to midvein; corolla infundibuliform to salverform, yellow or cream-
ish...Trachelospermum difforme FACW; FACW
18. Herbaceous perennial vine; stems greenish; leaves linear, tertiary venation inconspicuous, not perpendicular to midvein; corolla campanulate, the lobes white to pink-ish-white...Cynanchum angustifolium FACW; FACW, OBL
19. Vines not exuding milky latex when cut
20. Vine diminutive, often creeping; leaves basally serratedentate to hastate or sagittate; flowers zygomorphic, spurred, sepals 5, corolla yellowish, the upper lip purple, stamens 4...Kickxia elatine FACU; UPL, FAC
21. Vine not diminutive, typically twining into shrubs and lower canopy; leaves entire, basally rounded to cuneate; flowers zygomorphic or not, not spurred, calyx 5-lobed, corolla yellowish or not, stamens 5
22. Plants with stipules or at least exhibiting a stipular scar [Loganiaceae]
23. Calyx lobes obtuse; capsule beak < 2 mm long; seeds winged...Gelsemium sempervirens FAC; FAC 13. Calyx lobes acute to acuminate; capsule beak > 2 mm long; seeds wingless...Gelsemium rankinii FACW+; FACW+
24. Plants estipulate [Caprifoliaceae]
25. Leaf abaxial surface not glaucous; inflorescence axillary, subtending leaves not perfoliate; corolla white or yellow; ovaries connate; berries black...Lonicera japonica FAC-; FACU, FAC+
26. Leaf abaxial surface glaucous; inflorescence terminal, subtending leaves perfoliate; corolla red, fre-
quently yellow inside the tube; ovaries not connate; berries red

15 . Corolla $\geq 2.9 \mathrm{~cm}$ long, nearly actinomorphic, not 2-lipped, the lobes subequal; throughout the Carolinas...Lonicera sempervirens FAC; FACU, FAC
15 . Corolla $\leq 1.5 \mathrm{~cm}$ long, distinctly zygomorphic, 2lipped, the lobes unequal; mountain woodlands and thickets...Lonicera dioica FACU; FACU

Key 4: Leaves opposite, compound

1. Vine tendrillate, the tendril borne between two leaflets; leaves bifoliolate...Bignonia capreolata FAC; FAC, FACW
2. Vine not tendrillate (although the terminal leaflet in Clematis sometimes tendril-like); leaves trifoliolate, pinnate, or bi-ternate
2 . Vine climbing by adventitious roots; leaves pinnate, leaflets 7-
15...Campsis radicans FAC; FACU, FAC
3. Vine climbing by twining, twisting rachises, petioles, or petiolules, adventitious roots lacking; leaves trifoliolate, pinnate, or biternate, leaflets 3-10 [Ranunculaceae]
4. Inflorescence paniculate, flowers not nodding; perianth
broadly campanulate, the sepals thin, spreading, not connivent; white to cream
5. Flowers bisexual (some unisexual); pistils numbering ≤ 10 per flower; anthers ca. 3 mm long...Clematis terniflora FAC-; UPL, FAC-
6. Flowers unisexual; pistils numbering $\geq 18-70$ per flower; anthers < 1 mm long
7. Leaves trifoliolate; pistils 40-70...Clematis virginiana FAC+; FACU, FAC+
8. Leaves pinnately or bi-ternately compound; pistils 18-
35...Clematis catesbyana FAC+; FAC+
9. Flowers solitary, nodding; perianth urceolate to campanulate,
the sepals thick and leathery, connivent proximally, red to pur-plish-red or violet-blue
10. Abaxial leaf surface glaucous; sepals red to purplish-red, the margins not crispate; achene beaks $\geq 5 \mathrm{~cm}$ long, plumose
...Clematis glaucophylla FAC-; FAC-, FACW
11. Abaxial leaf surface not glaucous; sepals violet-blue, the margins distally crispate; achene beaks $\leq 3.5 \mathrm{~cm}$, appressed puberulent...Clematis crispa FACW+; FAC, OBL

LITERATURE CITED

Bell, D.J., I.N. Forseth, and A.H. Teramura. 1988. Field water relations of three temperate vines. Oecologia 74:537-545.

Castellanos, A.E., C. Tinoco-OJanguren, and F. MolinaFreaner. 1999. Microenvironmental heterogeneity and space utilization by desert vines within their host trees. Annals of Botany 84:145-153.

Collins, B.S., and G.R. WEin. 1993. Understory vines: distribution and relation to environment on a southern mixed hardwood site. Bulletin of the Torrey Botanical Club 120:38-44.

GODFREY, R.K. 1988. Trees, shrubs, and woody vines of northern Florida and adjacent Georgia and Alabama. University of Georgia Press, Athens.

Godfrey, R.K. and J.W. Wooten. 1981. Aquatic and wetland plants of southeastern United States. Dicotyledons. University of Georgia Press, Athens.

Krings, A. 1997. An illustrated guide to the tendrillate lianas and
vines from the mountains of Costa Rica. M.S. Thesis, North Carolina State University, Raleigh.

Putz, F.E., and P. ChAI. 1987. Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. J. Ecology 75:523531.

Radford, A.E, H.E. Ahles, and C.R. Bell. 1968. Manual of the vascular flora of the Carolinas. University of North Carolina Press, Chapel Hill.

ReEd, P.B. 1988. National list of plant species that occur in wetlands: Southeast (Region 2). USDI/USFWS Biol. Rept. 88 (26.2).

Small, J.K. 1933. Manual of the Southeastern flora. University of North Carolina Press, Chapel Hill.

WOFFORD, B.E. 1989. Guide to the vascular plants of the Blue Ridge. University of Georgia Press, Athens.

